Testing passive networks in distributed antenna systems (DAS)

White paper
Table of contents

Introduction ..3
DAS testing overview ...3
DAS categories ...4
 Passive DAS ..4
 Active DAS ...5
 Hybrid DAS ...6
Other DAS types ...6
Variations on a theme ...7
 MIMO considerations ...7
 Outdoor DAS ...8
 Emergency services DAS ...8
DAS branch testing ...8
Branch testing ..10
 Per-cable tests ..10
 Per-antenna tests ..11
 Per-branch tests ..11
 Per-system tests ...12
Simplifying the process ..12
 Branch testing example ..12
 Naming measurements ...14
Sample data sets ..15
Generating a report ...16
Summary ..17
References ..18
Introduction

In the last decade, worldwide consumer demand for cellular services has driven network operators to strive for better network coverage and within that coverage footprint, better network capacity. Since more than 80% of cellular traffic comes from inside a building of some sort, in-building coverage, and in-building capacity have become a focus of this effort [1]. In addition, in many countries, emergency service providers require cellular access in all areas of large buildings, adding to the importance of in-building coverage. This emphasis is regional and particularly prevalent in Asia and North America [2]. Overall, global growth in the distributed antenna systems (DAS) market is projected to be above 10% CAGR through 2023, reflecting a growth from around 8 billion USD to about 14 billion USD by 2023 [3].

This has created a thriving infrastructure of contractors who install and test DAS and work with the often complex cable and antenna systems. This white paper will focus on these DAS-oriented cable and antenna tests.

DAS testing overview

Network operators and public safety providers who rely on DAS need to know that the DAS they use will work for their specific RF bands and technologies providing the necessary capacity and coverage. Given the complex nature of a DAS RF system, the need to cover multiple RF bands and challenges with physical access to the cables, the DAS installation industry has mostly moved to a “test first” philosophy. It has proven to be cost-efficient to test these systems thoroughly and completely during installation.

There are a lot of RF testing steps in a typical DAS installation, starting with cable and antenna test, PIM, branch tests and system level tests, and then moving on to RF leveling and walk testing. This is all done with the intent of optimizing capacity.

Installations in larger venues, such as a sports stadium or a large convention center, can require literally tens of thousands of measurements. Testing in medium-size installations, such as might be found in a multistory office building or hotel, can still generate thousands of measurements. But why are so many measurements required? To answer this question, we will need to take a look at the different DAS types and how they are tested.
DAS categories

DAS can be grouped into general categories, depending on the signal source, amplification and signal transport media. Since the testing requirements vary greatly within a given category, let us take a brief look at several types of common DAS installations.

Passive DAS

A passive DAS is intended to provide a simple coverage solution for smaller buildings. The central idea of a passive DAS is that it takes the signal from an external macro tower or perhaps an internal source, and repeats it through a passive network of splitters, cables and antennas inside the building, and in turn, receives the user equipment signals from inside the building and repeats them for the external tower or other cellular RF interface. If the design allows, network operators and public safety can share a passive DAS system, implementing multiple technologies and frequency bands through the passive cable, splitter and antenna network, much like they do over-the-air with longer range radio systems. A passive DAS can be expensive to install and test as well as difficult to modify. This is due to the long length of semi-rigid coax cables used and the limited ways in which to adjust power at each antenna, which is necessary to ensure good coverage. To make matters more interesting, whatever is done to adjust power at one antenna will affect power levels at other antennas.
An active DAS may be created in many different configurations, but the one pictured above is very common. In this figure, a variety of transceivers create RF signals on various bands. The RF signals are converted to optical analog signals, distributed on fiber to multiband radio units, converted back to RF and then transmitted from the local antennas. The terminal antennas and radio units may be either integrated into one physical unit or be separate.

Active DAS systems offer the greatest installation flexibility, since fiber is much easier to install and route than RF cable, and it is much easier to adjust power at each antenna for good coverage. There is a lot of flexibility in the selection of RF signal sources when adjusting cellular sectors.

However, active DAS systems are expensive. The equipment is significantly more expensive than the equipment for a passive DAS, and the multiband radio units take up a lot more space for the antenna location at the real estate. An active DAS offers flexibility and, in some cases, may be the best solution.
A hybrid DAS combines these two technologies. The idea is to combine the flexibility of an active DAS with lower cost. The hybrid approach can be cost-effective and at the same time improves cellular capacity. This is the most common type of installation in larger buildings and sports venues. In this case, the RF signal sources can be located in an equipment room somewhere on the premises and use fiber for the longer signal runs. Once the fiber gets to the desired floor, stadium section or other endpoint, a multiband radio unit is used to convert the analog optical signals back to RF and then the RF carriers are routed through a local RF cable, splitter and antenna network. This section, from the multiband radio units to the antennas, is often referred to in the industry as a “branch”. The base of the branch, the multiband radio unit, is referred to as either a fiber bidirectional transceiver (FBDA) or a remote radio unit (RRU).

While a hybrid DAS is less flexible than an active DAS and will have a somewhat higher noise figure, it is better on both counts than a passive DAS, and it is less costly than an active DAS.

Other DAS types

While not as prevalent, there are other ways to implement DAS. A digital DAS uses the CPRI digital communications protocol on the fiber link and a number of multiband radio units with integrated antennas at the terminal locations. This is cost-efficient and flexible, including the ability to dynamically re-allocate capacity, but is sometimes hindered by compatibility issues between various vendors’ equipment. Incompatible firmware updates, for instance, can cause serious issues.

A distributed radio system (DRS) provides much the same capability as a DAS, but uses network equipment manufacturer (NEM) radio units with integrated antennas. One NEM builds all of the equipment in the system, and the communications links may be proprietary. Initially, this sort of system has been limited to one frequency, one technology.
and one network operator, making multiple installations necessary for each technology and operator.

Distributed small cells are another way to install a DAS. In this case, the small cells are installed locally, at the desired antenna site, in much the same way as they would be on the street. This is primarily a single operator solution, and so cost may become the biggest issue.

Variations on a theme

MIMO considerations
As shown in the figure below, MIMO technology doubles the requirement for cables, splitters and antennas. In the case of a passive DAS (illustrated), this means a complete duplicate cable, splitter and antenna installation, greatly increasing the complexity, hardware and testing costs. In a similar manner, MIMO also doubles the branch hardware requirement for a hybrid DAS.

Neutral host considerations
A neutral host system is designed to work for any desired cellular band and with all communications technologies. It may also work for emergency services and with Wi-Fi. This complicates testing, since a neutral host system must be tested on each certified frequency band, and if one of the technologies is LTE, it may also involve MIMO. The costs of the system can be shared between network operators, thus reducing the financial burden on a single operator.
Outdoor DAS

Fig. 5: One node of an outdoor DAS installation near a sports venue

Another concept of interest is that DAS can be created as either an indoor DAS (iDAS) or outdoor DAS (oDAS). Our discussion has focused on iDAS. An oDAS will typically be installed to enhance the capacity outside a venue. While an iDAS tends to be quite large, oDAS is similar to a small cell tower with remote radio heads for each sector and frequency accessed by fiber from a remote location. Once configured, this design is often replicated for each outdoor location. In this case, testing will be repetitive and done quickly, though the rigor of the tests does not change.

Emergency services DAS

Emergency services may choose to share infrastructure with the network operators as part of a neutral host DAS or, in some cases, may require installation of a separate DAS. The public safety DAS requirement is often the responsibility of the building owner to install, similar to building safety requirements such as sprinklers and emergency exits.

DAS branch testing

The major goals of a DAS installation are to make sure coverage is even between antennas, handover locations are precisely defined to control sector loading and distortion is minimized. This allows maximum cellular traffic capacity. A walk test is often used to verify that these goals have been achieved. A successful walk test requires accurate RF power at each antenna, in each frequency band and with good signal quality. Achieving
accuracy at the antennas requires accurate knowledge of the cable, splitter and antenna network in each branch and in each frequency band. Accurate knowledge of the cable, splitter and antenna network requires comprehensive testing of the cable, antenna and splitter network (the branch) in each deployed band.

To understand the implications of these test needs, let us take a look at an example. We will select a common installation, a hybrid DAS branch as shown in Fig. 6. As part of the example, we will assume that this is a neutral host installation with three required frequency bands. In the United States, this might be frequency bands from 698 MHz to 960 MHz, 1695 MHz to 2200 MHz and 2200 MHz to 2700 MHz. The latter two frequency bands may be combined into one band for testing or tested separately depending on the end-customer’s requirements. We will assume they are combined in our example. It is worth noting that this method of testing reduces the total number of bands that need to be tested, saving time and complexity. An example of this is the frequency band from 2200 MHz to 2700 MHz, which can contain public safety, Wi-Fi and cellular bands.

Fig. 6: MIMO hybrid DAS branch example

Much of the RF testing is concentrated in the branches, the part of the hybrid DAS between the final RF transceiver and the air interface. When considering the test needs of this network, one key point is that most of the RF cable in a branch comes in large spools and the connectors are mated to the cable on-site. This means that the cables undergo final assembly on-site and therefore should be fully tested. In addition to the cable tests, antennas may also have required tests. For example, antennas can be defective and/or interact with nearby metal or corrosion in the surrounding environment.

In the case of a hybrid DAS system, the multiband radio unit at the base of the branch is often a fiber bidirectional amplifier (FBDA) or a remote radio unit (RRU). Branch build and test normally starts at the FBDA or RRU (the base of the branch) and proceeds towards the antennas. The tests can be divided into tests for each cable, for each antenna, for the cable and splitter assembly with a load in place of the antennas and for the fully assembled branch including antennas. Specific branch tests include return loss, cable loss, distance-to-fault and passive intermodulation (PIM). After passing these tests, the complete DAS will undergo RF leveling tests and walk tests.
In the case of a MIMO branch, the number of tests will multiply, as explained before, along with the numbers of cables, splitters and antennas.

Each cable in every band must be certified to be defect-free before use. These tests include return loss, cable loss and measuring PIM in the extreme bands. These specific tests are explained in the next section. In our example, there are only two frequency bands, but in general up to five frequency bands may be required. All of this is done with the goal of making the RF leveling test and walk tests run smoother, as it can be painful to fix issues in those phases of the build-out.

Branch testing

Branch testing can be separated into per-cable, per-branch and per-system tests. Per-cable tests are run on each cable assembled on-site. Per-branch tests are run from the base of a branch with precision loads or PIM loads, instead of antennas at the other end of the cable assembly. System tests are run from the base of the branch with antennas installed.

Per-cable tests

Specific per-cable tests typically include:

- **Return loss**
 - This test spots any defects in the cable or connector that causes reflections or standing waves. Excessive reflections rob power from the signal, add distortions and can cause the RF transceiver to shut down when very large.
 - Return loss is normally measured for each frequency band used.
 - This test is done with a precision load at the far end of the cable.

- **Distance-to-fault (DTF)**
 - This test provides the distance to any abnormality in the cable that generates a significant return loss. This might be a cable defect, a minimum bend radius violation in the cable (a kink), an improperly installed connector or a crimp due to a tight clamp. This test is often done only for the lowest frequency band to be used, but may be done over the full frequency range in which the cable is to be used.
 - This test is done with a precision load at the far end of the cable.

- **Cable loss**
 - One-port cable loss is a measure of signal attenuation in the cable. Cable loss varies with frequency, cable type and cable length and is taken into account as part of the DAS design. Excessive cable loss can make the cable unusable or make it impossible to balance the RF power at the antennas.
 - Cable loss is normally measured for each frequency band in use.
 - This test is done with a precision short at the far end of the cable.

- **Passive intermodulation (PIM)**
 - This test checks for intermodulation products that might be generated within the cable. They can be caused by improper connector installation, metal shavings, cable faults or corrosion within the cable or connectors.
 - PIM is an issue when multiple RF carriers are routed through the same set of cables and can prevent the branch from working as intended by raising the noise floor at certain frequencies.
 - Cable PIM tests are normally run at a high power level, with a PIM load (high power precision load) at the far end of the cable.
 - Cable PIM tests are normally done in one of the low and one of the high frequency bands.
Per-antenna tests
Antennas may or may not be tested prior to being assembled to the branch. This decision depends on the confidence the engineering team has in the particular antenna brand and model used. If the antennas are tested individually, specific per-antenna tests include:

Antenna return loss
These tests are normally made for each band the antenna covers, which may include up to five measurements per antenna. If the antenna bands are contiguous the number of return loss measurements may be reduced.

Antenna PIM
Some DAS installations also require individual PIM measurements for their antennas after they have been installed. Since an installed antenna’s PIM response is affected by its environment (nearby metal structure in particular), the power supplied to the antenna during this test should be as close as possible to the planned power used during normal operation.

Per-branch tests
The next stage of testing is to check the assembled branch (without the antennas connected). Instead, a precision load is used in place of the antennas for the return loss and DTF testing, and a PIM load is used in place of the antennas for the branch PIM testing. A common term for this phase of the testing is referred to as “branch testing”.

Branch return loss
This test is normally done in each implemented band. This is different than the cable return loss, since now all the cables and splitters are connected. This test can catch loose connections or mismatches that would lead to a transmitter VSWR alarm. Caution is needed, as intentionally lossy components such as couplers and splitters can mask return loss faults in an assembled cable branch. This is why return loss testing for each cable is so important.

Branch DTF
This test can be used to identify the location of mismatches in a branch. However, some branch topologies may put multiple antennas at the same electrical distance from the test point, so be careful when interpreting the results. For this reason, a branch DTF measurement is most useful when recorded during construction and used to spot changes at a later date.

Branch PIM
This test is normally done at a high power level. It is a stress test for the cable and splitter assembly and will catch installation faults that could show up as intermittent issues later. If the cable and splitter assembly passes this stress test, you can have confidence that the assembly will have a long service life.

Rohde & Schwarz
Per-system tests
The final stage of branch testing is the system test. For this test set, the branch is fully assembled with antennas, properly torqued and tested as a whole.
- System return loss: may be required in each contiguous band once the antennas are installed. As in the branch tests, faults may be masked by intentionally lossy components
- System DTF: may be used to record the final location of components (good reference for later troubleshooting)
- System PIM testing: will make sure that antenna and environmental interactions are within limits

As with the antenna PIM test, power levels need to be adjusted to produce a realistic signal level at the antenna. Otherwise, environmental sources of PIM will cause many apparent failures.

Simplifying the process

Branch testing example
To appreciate how branch testing works in practice, let us go back to our neutral host MIMO hybrid branch example with two aggregated frequency bands for testing. In this case:
- For each cable, we need to make 2 return loss, 2 cable loss, 1 DTF and 2 PIM tests. This amounts to 7 tests per cable. With 14 cables in our example branch, that means 98 cable tests
- If antennas need to be tested, we will likely need 2 return loss and 2 PIM tests per antenna for 32 antenna tests
- The branch tests will require 2 return loss, 1 DTF and 2 PIM tests for a total 5 branch tests
- The system test will also require 2 return loss, 1 DTF and 2 PIM tests for another 5 system tests

Fig. 7: DAS antennas may be difficult to reach after installation
This works out to either 103 or 135 total tests for our small example neutral host MIMO branch with two discrete RF bands and four MIMO antenna pairs. And with some venues requiring dozens or hundreds of branches, it is easy to see that branch testing and keeping track of the branch tests deserves attention.

Fig. 8: Example cable name

![Diagram of a cable network](image)

Major time sinks when running branch tests include:

- Getting physical access to both ends of the cable. Getting equipment and personnel in place to gain access to both ends of the cable can be both expensive and time-consuming. This often involves man-lifts and catwalks.

- Swapping out the precision load with the precision short, the PIM load or the antenna. Tests need to be arranged to minimize termination swapping.

- Measurement naming issues:
 - Typing the trace name into the instrument can take a significant amount of time and is an error-prone process.
 - For example, an actual trace name might be 0_F012_S2_B1_DFTL_CB. To expand this name, let us use the example in Fig. 8. This name would indicate that this trace is for stadium section 0, in the FBDA 012 (F012) branch, connected to the FBDA side of splitter 02 (S2) in RF band 1, and the test would be a DTF, with a load on the far end of the cable (DTFL), and it would be a cable test, not a branch or system test (CB). Test names are highly specific.

- Mislabeling or otherwise losing the trace, requiring rework.

- Improper measurement setup, requiring rework.

- Submitting a failed trace as good, requiring rework.

- Lack of trace naming standards is extremely inefficient.

- Rework requiring the crew to return to the site will likely delay payment by weeks or months.

It is clear that branch testing needs to be done right the first time.
Naming measurements

While test equipment cannot address all of these issues, the proper selection and use of test equipment can address some of them. Measurement naming, in particular, can be a significant time sink. Not only can misnaming create lost traces and rework, it can also take quite a bit of time to type in filenames (in some cases this takes more time than the actual measurement). Remember that a measurement can take a few seconds, but typing a complex filename is slow.

Fig. 9: Quick name set generated by the R&S®InstrumentView software

The quick name table editor in the R&S®InstrumentView software can dramatically shorten this time, while at the same time reduce errors. Fig. 9 shows a screenshot of a set of quick name selections in R&S®InstrumentView software from an R&S®ZVH8 cable and antenna analyzer. When creating a filename for a trace, the user simply selects the filename segments, one from each column, and the name is created. An underscore or space can automatically be added between naming segments. Using this technique, a filename like 0_F012_S2_B1_RLL_CB can quickly and accurately be created. Sets of quick names can be stored on the R&S®ZVH8 and recalled as needed.
Sample data sets

Setting up the instrument from the front panel can be tedious and error-prone if done for each measurement. A simple solution is to create sample data sets ahead of time. In Fig. 10, three cable loss, three return loss and one DTF data set(s) have been created and stored on the test equipment. When a test is needed, the generic test can be recalled, ran and then saved as a specific result using the quick name matrix. This eliminates error-prone repetitive setups, provides consistency and speeds up the overall process. It also gives the user flexibility to modify setups on a one-time basis if, for instance, the particular cable being tested is longer than the default DTF length.

![Sample cable test setups on the R&S®ZVH8](image-url)
Generating a report

Once a set of tests have run, the results need to be moved from the instrument to a PC. This may be done with the R&S®InstrumentView software. Once the instrument is connected to your PC using R&S®InstrumentView, you can use the file manager to quickly copy measurement results to your PC.

Once the data sets are on your PC, R&S®InstrumentView has a report generator that can create output in PDF, HTML or RTF format. The report will have a header page and one measurement per page for the rest of the report. Fig. 11 shows a sample page from the report, including the quick name assigned on the instrument. These pages can be included in any formal report.

Fig. 11: Report generator output of the R&S®InstrumentView
Summary

In-building cellular coverage has become important for both emergency services and high-speed cellular data communications. This has generated a surge in DAS installations, particularly in North America and Asia.

The complexity of DAS and expense of rework has led to a climate where it is generally accepted that complete testing must occur during installation. The side effect of this policy is that even simple systems, such as our four paired antenna MIMO example, can require dozens or hundreds of documented tests. The payoff of the “do it right the first time” philosophy is immense and thus has resulted in the need to simplify the testing process as much as possible.

DAS physical component access, trace naming, load swapping, repetitive instrument set-ups and report generation are all considerable time sinks. Use of the R&S®InstrumentView application coupled with an R&S®ZVH cable and antenna analyzer can greatly simplify the test process and reduce costly rework.

The examples in this white paper were created using the R&S®ZVH8 cable and antenna analyzer. While we have focused on the cable and antenna test requirements, Rohde & Schwarz has a full line of handheld and portable test and measurement equipment ideally suited for DAS in-building and outdoor testing and turn-up. To learn more about these and other products, please visit www.rohde-schwarz.com or contact your local Rohde & Schwarz sales office.

Keith Cobler, Rohde & Schwarz USA, Inc.
References

<table>
<thead>
<tr>
<th>Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>In-Building Mobile Data Traffic Forecast; ABI Research, January 2016</td>
</tr>
<tr>
<td>[3]</td>
<td>Distributed Antenna System (DAS) Market by Offering (Components and Services), Coverage (Indoor and Outdoor), Ownership (Carrier, Neutral-Host, and Enterprise), User Facility, Vertical (Commercial, Public Safety), and Geography – Global Forecast to 2023; MarketsandMarkets, June 2018</td>
</tr>
</tbody>
</table>
Rohde & Schwarz
The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, monitoring and network testing. Founded more than 80 years ago, the independent company which is headquartered in Munich, Germany, has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Regional contact
- Europe, Africa, Middle East | +49 89 4129 12345 customersupport@rohde-schwarz.com
- North America | 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com
- Latin America | +1 410 910 79 88 customersupport.la@rohde-schwarz.com
- Asia Pacific | +65 65 13 04 88 customersupport.asia@rohde-schwarz.com
- China | +86 800 810 82 28 | +86 400 650 58 96 customersupport.china@rohde-schwarz.com

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG
Trade names are trademarks of the owners
PD 5216.2053.52 | Version 01.00 | November 2018 (r)
White paper | Testing passive networks in distributed antenna systems (DAS)
Data without tolerance limits is not binding | Subject to change
© 2018 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany